У всех людей есть перья.
------------------------
У всех клерков есть перья.
Это доказательство тоже обоснованно, хотя вывод неверен. Неправдоподобность вывода заставляет нас почувствовать, что доказательство тоже неверно. Но если мы подставим А, Б и В вместо клерков, людей и перьев, мы увидим, что доказательство обоснованно. А это может заставить нас по-новому посмотреть на истинность вывода, что может быть полезно.
Доказательство, которое я приведу ниже, не обоснованно, несмотря на то что его предпосылки и вывод, который из них следует, являются истинными (или как минимум чрезвычайно правдоподобными).
...Все люди, получающие социальное пособие, бедны.
Некоторые бедные люди непорядочны.
Следовательно, некоторые люди, получающие социальное пособие, непорядочны.
В абстрактных величинах:
...Все А являются Б.
Некоторые Б являются В.
Следовательно, некоторые А являются В.
Это упражнение перевода данных в абстрактные величины полезно, потому что иногда нам кажется, что вывод является истинным потому, что кажется правдоподобным, и потому, что имеются истинные предпосылки, которые, казалось бы, логически подтверждают вывод. Обнаружив, что доказательство не обосновано, мы избавимся от чувства, что вывод непременно является истинным, и усомнимся в его достоверности. (Чтобы признать необоснованность приведенного выше доказательства, нужно понять, что случаи А являются подгруппой случаев Б.)
С этого места все начинает стремительно усложняться: все А являются Б, некоторые В являются А, некоторые В являются Б. Верно или нет? Никакие А не являются Б, некоторые В являются Б, никакие А не являются В. Верно или нет?
Можно менять эти буквы местами, пока не потемнеет в глазах. В Средние века монахи коротали время, сочиняя подобные высказывания сотнями. Но я согласен с философом Бертраном Расселом, который заметил, что эти силлогизмы были так же бесплодны, как сами монахи. Вот вам и 26 столетий педагогики, уверяющей, что силлогизмы необходимы для эффективного мышления.
Самое важное, что я вынес для себя из изучения категориального логического мышления, это умение строить диаграммы Венна, названные в честь английского логика XIX в. Джона Венна, который придумал, как изображать принадлежность к категориям. Я не перестаю удивляться, насколько они полезны, даже необходимы для представления взаимосвязей между различными категориями.
На рисунке 5 изображено несколько практически полезных примеров, которые дадут вам общее представление об этих диаграммах.
Рис. 5. Область пересечения категорий
Левая верхняя схема на рисунке 5 изображает конкретный силлогизм, который мы используем в повседневной жизни. Этот силлогизм представляет ситуацию, в которой некоторые (но не все) А являются В и некоторые (но не все) В являются А. Например, А означает маленьких пушистых зверьков, а В означает зверьков с утиным клювом. Получается, что на пересечении А и В есть одно животное, а именно — утконос. Также эта схема может демонстрировать ситуацию, когда некоторые, но не все ученики международной школы, говорящие по-английски, также говорят по-французски и некоторые, но не все ученики, говорящие по-французски, говорят по-английски. (Некоторые, но не все А являются В, и некоторые, но не все В являются А.) У тех, кто говорит только по-английски (только А), математику должна преподавать мисс Смит; у тех, кто говорит только по-французски (В), преподавать должен мсье Пиро. Ученики, которые говорят на обоих языках, могут заниматься у любого из этих преподавателей.
Верхняя правая схема показывает гораздо более сложную, но отнюдь не редкую ситуацию, при которой некоторые А являются В, некоторые В являются А, некоторые А являются С, некоторые С являются А, некоторые В являются С и некоторые С являются В.
Нижняя схема демонстрирует реальный пример такой ситуации. На ней изображены области пересечения букв из разных алфавитов: греческого (сверху слева), латинского (сверху справа) и русского (внизу). Ручаюсь, что вам вряд ли удастся прийти к правильному выводу по поводу совпадения данных категорий, используя только вербальные высказывания о них. Уверен, что у меня наверняка получилась бы просто каша из трех алфавитов.
Одних диаграмм Венна, конечно, недостаточно, чтобы подготовить вас к решению всех соответствующих задач, но они могут научить вас основным принципам наглядного изображения принадлежности или непринадлежности к категориям. Возможно, вы поймете, что диаграммы Венна могут оказаться для вас полезны.
Силлогизмы можно применять в очень небольшом числе выводов, которые нам приходится делать в повседневной жизни. Гораздо более важно использовать логику высказываний, которая применяется повсеместно.
Философы и логики время от времени обращались к логике высказываний, постепенно развивая эту область науки приблизительно с III в. до н.э. и до XIV в. Начиная с середины XIX в. логики начали делать заметные успехи в области логики высказываний, уделяя особенное внимание таким «операторам», как союзы «и» и «или». «И» служит для «соединения» таких высказываний, как «А верно и В верно; следовательно, А и В верны». «Или» служит для «разъединения», например, «А верно или В верно; А верно, следовательно, В не верно». Именно исследование логики высказываний в то время легло в основу программирования и создания компьютеров.